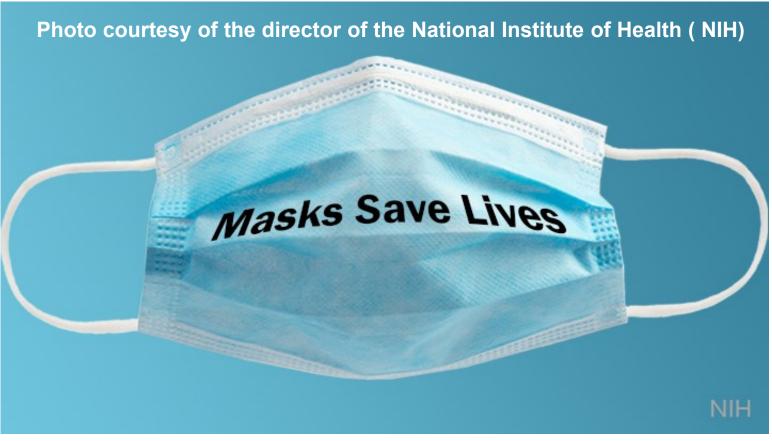
EE 330 Lecture 41

Digital Circuits

Capacitive Loading Effects on Propagation Delay Overdrive Factors Propagation Delay With Multiple Levels of Logic

Exam Schedule

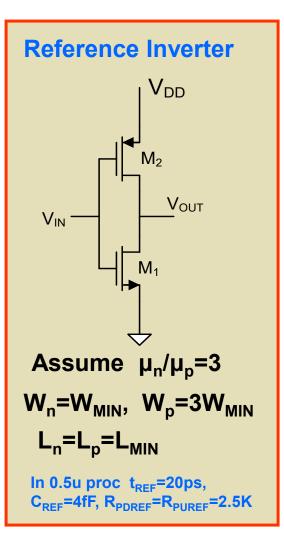
Final Wed May 11 7:30 a.m.



As a courtesy to fellow classmates, TAs, and the instructor

Wearing of masks during lectures and in the laboratories for this course would be appreciated irrespective of vaccination status

The Reference Inverter



 $R_{PDREF} = R_{PUREF}$

$$C_{REF} = C_{IN} = 4C_{OX}W_{MIN}L_{MIN}$$

$$\mathsf{R}_{\mathsf{PDREF}} = \frac{\mathsf{L}_{\mathsf{MIN}}}{\mathsf{\mu}_{\mathsf{n}} \mathsf{C}_{\mathsf{OX}} \mathsf{W}_{\mathsf{MIN}} (\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{Tn}})} \stackrel{V_{\mathsf{Tn}} = .2V_{\mathsf{DD}}}{=} \frac{\mathsf{L}_{\mathsf{MIN}}}{\mathsf{\mu}_{\mathsf{n}} \mathsf{C}_{\mathsf{OX}} \mathsf{W}_{\mathsf{MIN}} (0.8\mathsf{V}_{\mathsf{DD}})}$$

$$\mathbf{t}_{\mathsf{HLREF}} = \mathbf{t}_{\mathsf{LHREF}} = \mathbf{R}_{\mathsf{PDREF}} \mathbf{C}_{\mathsf{REF}}$$

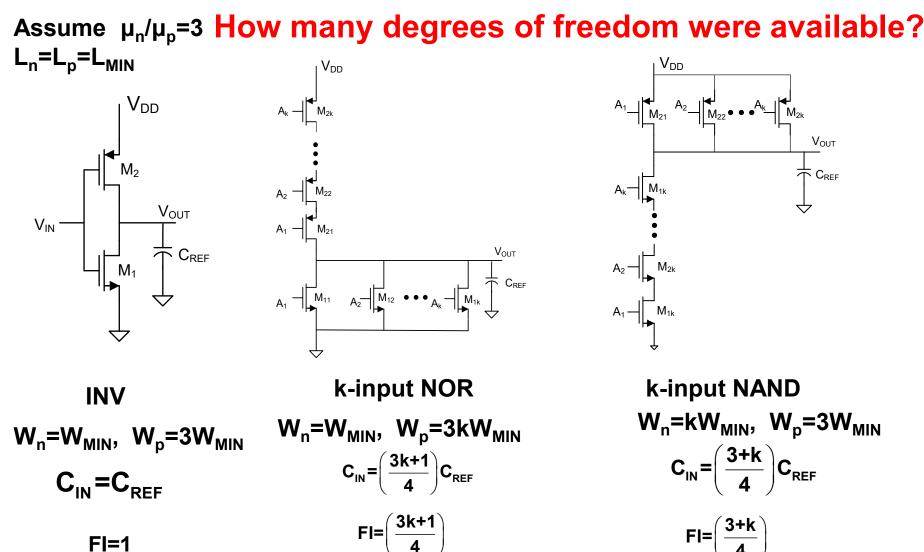
$$t_{REF} = t_{HLREF} + t_{LHREF} = 2R_{PDREF}C_{REF}$$

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

Device Sizing

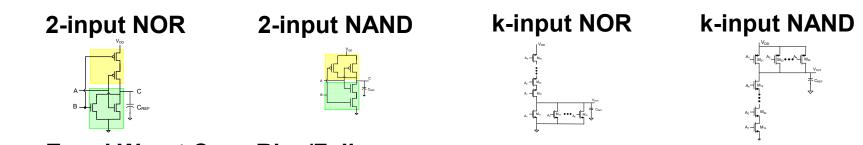
Equal Worse-Case Rise/Fall Device Sizing Strategy

-- (same as V_{TRIP}=V_{DD}/2 for worst case delay in typical process considered in example)



Multiple Input Gates:

Device Sizing



Equal Worst Case Rise/Fall (and equal to that of ref inverter when driving C_{REF})

Wn=? Wp=?

Fastest response (t_{HL} or t_{LH}) = ?

Worst case response (t_{PROP}, usually of most interest)?

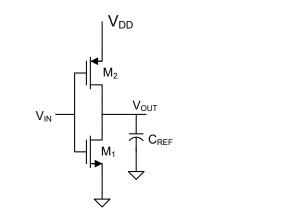
```
Input capacitance (FI) = ?
```

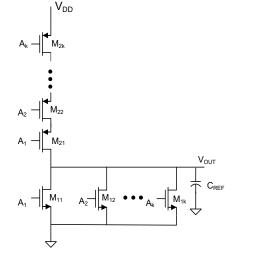
Minimum Sized (assume driving a load of C_{REF})

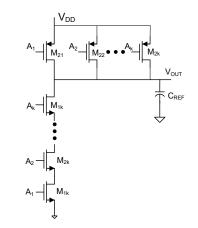
Wn=Wmin Wp=Wmin

Fastest response $(t_{HL} \text{ or } t_{LH}) = ?$ Slowest response $(t_{HL} \text{ or } t_{LH}) = ?$ Worst case response $(t_{PROP}, \text{ usually of most interest})?$ Input capacitance (FI) = ?

Device Sizing – minimum size driving CREF

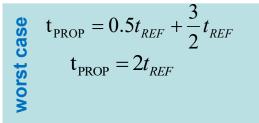






INV

k-input NAND



 $FI = \frac{C_{REF}}{2}$

 $\mathbf{R}_{PU} = \mathbf{3}\mathbf{R}_{PDREF}$

 $\mathbf{R}_{PD} = \mathbf{R}_{PDREF}$

 $t_{\text{PROP}} = 0.5t_{\text{REF}} + \frac{3k}{2}t_{\text{REF}}$ $t_{\text{PROP}} = \left(\frac{3k+1}{2}\right)t_{\text{REF}}$

$$t_{PROP} = \frac{3}{2}t_{REF} + \frac{k}{2}t_{REF}$$
$$t_{PROP} = \frac{3+k}{2}t_{REF}$$

3

$$\frac{1+3k^2}{2k}t_{REF} \le t_{PROP} \le \frac{3k+1}{2}t_{REF}$$
$$FI = \frac{C_{REF}}{2}$$

$$\frac{\mathbf{R}_{PDREF}}{\mathbf{k}} \le \mathbf{R}_{PD} \le \mathbf{R}_{PDREF}$$
$$\mathbf{R}_{PU} = 3\mathbf{k}\mathbf{R}_{PDREF}$$

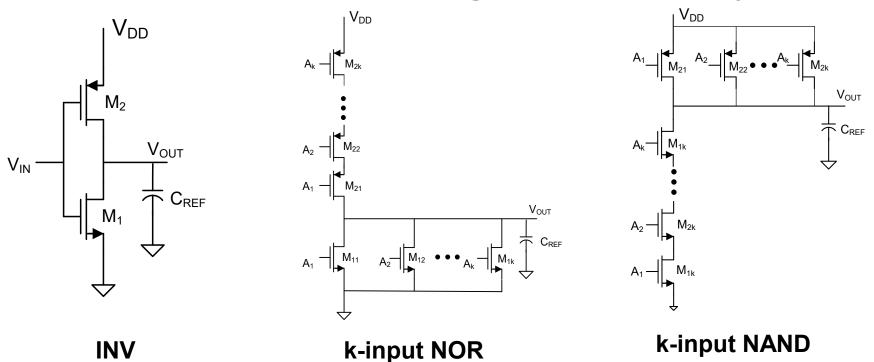
$$\frac{k^{2}}{2k} t_{REF} \leq t_{PROP} \leq \frac{3+k}{2} t_{REF}$$

$$FI = \frac{C_{REF}}{2}$$

$$\frac{3R_{PDREF}}{k} \leq R_{PU} \leq 3R_{PDREF}$$

$$R_{PD} = kR_{PDREF}$$

Device Sizing Summary



C_{IN} for N_{AND} gates is considerably smaller than for NOR gates for equal worst-case rise and fall times

 C_{IN} for minimulm-sized structures is independent of number of inputs and much smaller than C_{IN} for the equal rise/fall time case

 R_{PU} gets very large for minimum-sized NOR gate

Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
 - Properties of Logic Families
 - Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - 🔶 Ratio Logic
 - Propagation Delay
 - Simple analytical models
 - FI/OD
 - Logical Effort
 - Elmore Delay
 - Sizing of Gates

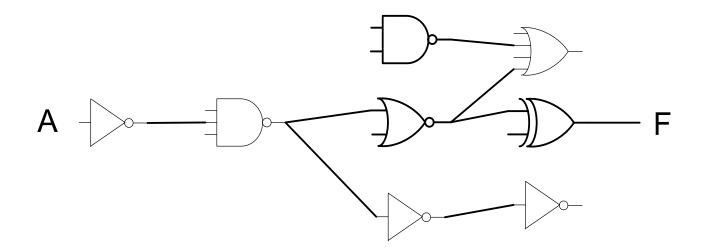
done

partial

The Reference Inverter

- Propagation Delay with Multiple Levels of Logic
 - Optimal driving of Large
 Capacitive Loads
 - Power Dissipation in Logic Circuits
 - Other Logic Styles
 - Array Logic
 - Ring Oscillators

Propagation Delay in Multiple-Levels of Logic with Stage Loading



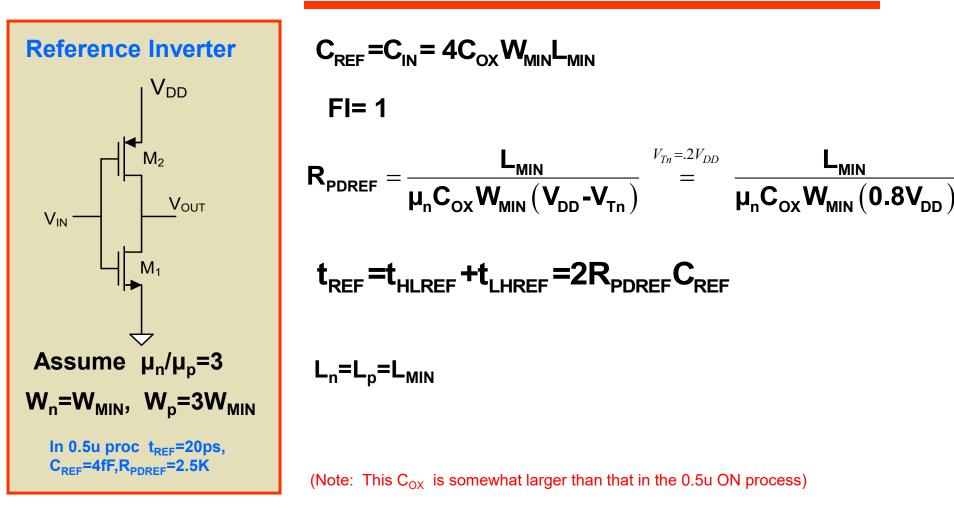
Assume all gates sized for equal worst-case rise/fall times

For n levels of logic between A and F

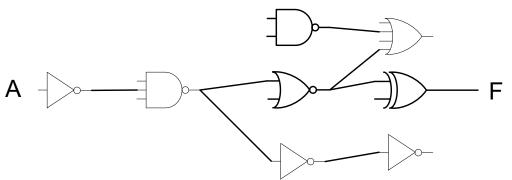
$$\mathbf{t}_{\mathsf{PROP}} = \sum_{k=1}^{n} \mathbf{t}_{\mathsf{PROP}}(k)$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Analysis strategy : Express delays in terms of those of reference inverter

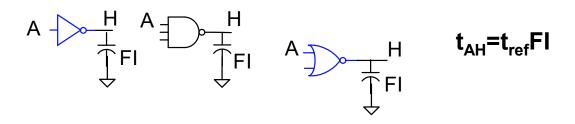


Propagation Delay in Multiple-Levels of Logic with Stage Loading



Assume:

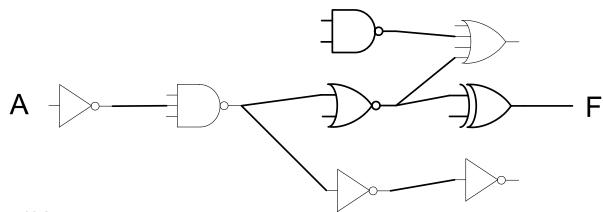
- all gates sized for equal worst-case rise/fall times
- all gates sized to have rise and fall times equal to that of ref inverter when driving C_{REF}



Observe:

 With these assumptions, propagation delay of these gates will be scaled by the ratio of the total load capacitance on each gate to C_{REF}

Propagation Delay in Multiple-Levels of Logic with Stage Loading



Assume:

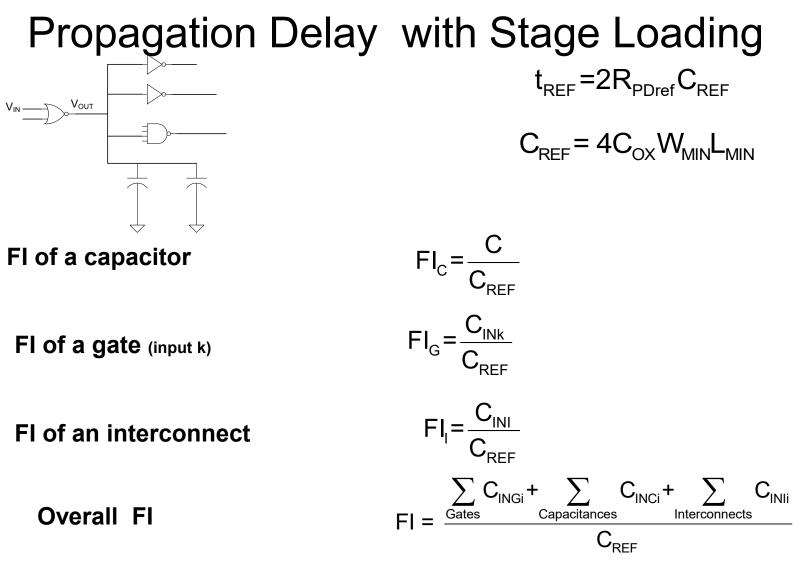
- all gates sized for equal worst-case rise/fall times
- all gates sized to have rise and fall times equal to that of ref inverter when driving C_{REE}

Observe:

 Propagation delay of these gates will be scaled by the ratio of the total load capacitance on each gate to C_{REF}

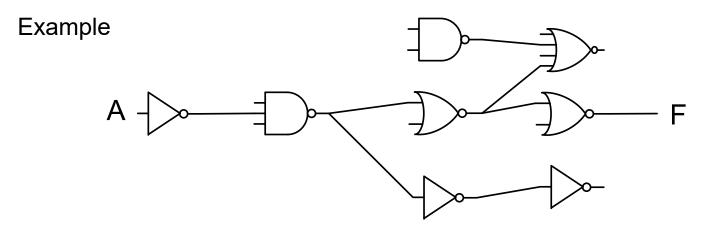
What loading will a gate see?

- Input capacitance to other gates
- Any load capacitors
- Parasitic interconnect capacitnaces



FI can be expressed either in units of capacitance or normalized to C_{REF} Most commonly FI is normalized but must determine from context If gates sized to have same drive as ref inverter $t_{prop-k} = t_{REF} \bullet FI_{LOAD-k}$

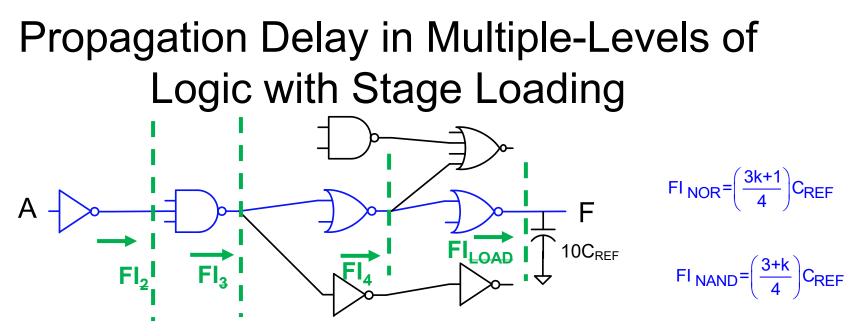
Propagation Delay in Multiple-Levels of Logic with Stage Loading



Assume all gates sized for equal worst-case rise/fall times

Assume all gate drives are the same as that of reference inverter Neglect interconnect capacitance, assume load of 10C_{REF} on F output

Determine propagation delay from A to F



Assume all gates sized for equal worst-case rise/fall times Assume all gate drives are the same as that of reference inverter Neglect interconnect capacitance, assume load of 10C_{REF} on F output Determine propagation delay from A to F

What loading will a gate see?

Derivation:

$$FI_{2} = \frac{6}{4}C_{REF} \qquad FI_{3} = C_{REF} + \frac{7}{4}C_{REF} \qquad FI_{4} = \frac{7}{4}C_{REF} + \frac{13}{4}C_{REF} \qquad FI_{LOAD} = FI_{"5"} = 10C_{REF}$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading

10C_{REF}

Example

Assume all gates sized for equal worst-case rise/fall times Assume all gate drives are the same as that of reference inverter Neglect interconnect capacitance, assume load of 10C_{REF} on F output

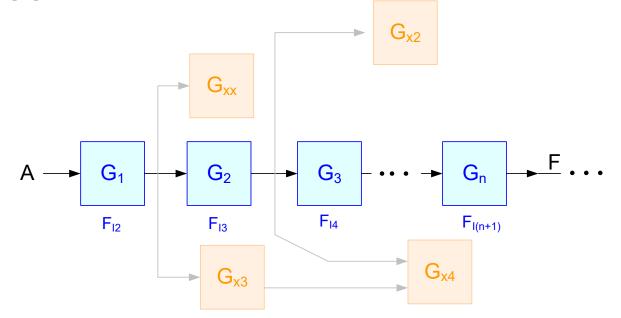
Determine propagation delay from A to F

DERIVATIONS

$$\begin{aligned} \mathsf{FI}_{2} = & \frac{6}{4} \mathsf{C}_{\mathsf{REF}} & \mathsf{FI}_{3} = \mathsf{C}_{\mathsf{REF}} + \frac{7}{4} \mathsf{C}_{\mathsf{REF}} & \mathsf{FI}_{4} = & \frac{7}{4} \mathsf{C}_{\mathsf{REF}} + \frac{13}{4} \mathsf{C}_{\mathsf{REF}} & \mathsf{FI}_{5} = & 10\mathsf{C}_{\mathsf{REF}} \\ t_{\mathsf{PROP1}} = & \frac{6}{4} t_{\mathsf{REF}} & t_{\mathsf{PROP2}} = & \left(1 + \frac{7}{4}\right) t_{\mathsf{REF}} & t_{\mathsf{PROP3}} = & \left(\frac{7}{4} + \frac{13}{4}\right) t_{\mathsf{REF}} & t_{\mathsf{PROP4}} = & 10t_{\mathsf{REF}} \\ t_{\mathsf{PROP4}} = & \sum_{k=1}^{n} t_{\mathsf{PROPk}} = & t_{\mathsf{REF}} \sum_{k=1}^{n} \mathsf{FI}_{(k+1)} = & t_{\mathsf{REF}} \left(\frac{6}{4} + \frac{11}{4} + \frac{20}{4} + & 10\right) = & t_{\mathsf{REF}} \left(19.25\right) \end{aligned}$$

Propagation Delay Through Multiple Stages of Logic with Stage Loading

(assuming gate <u>drives</u> are all same as that of reference inverter)



Identify the gate path from A to F

t_{PROPk}=t_{REF}FI_(k+1)

Propagation delay from A to F:

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{\mathsf{n}} \mathsf{FI}_{(k+1)}$$

This approach is analytically manageable, provides modest accuracy and is "faithful"

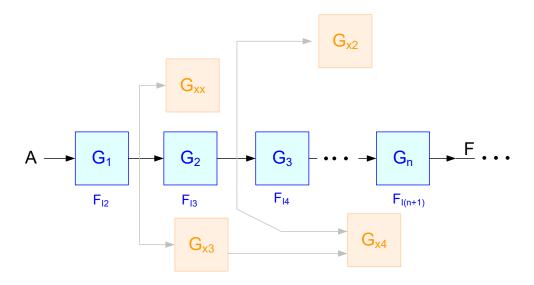
Digital Circuit Design

- Hierarchical Design
- **Basic Logic Gates**
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - 🔶 Ratio Logic
 - Propagation Delay
 - Simple analytical models
 - FI/OD
 - Logical Effort
 - Elmore Delay
- Sizing of Gates
 - The Reference Inverter

Propagation Delay with Multiple Levels of Logic

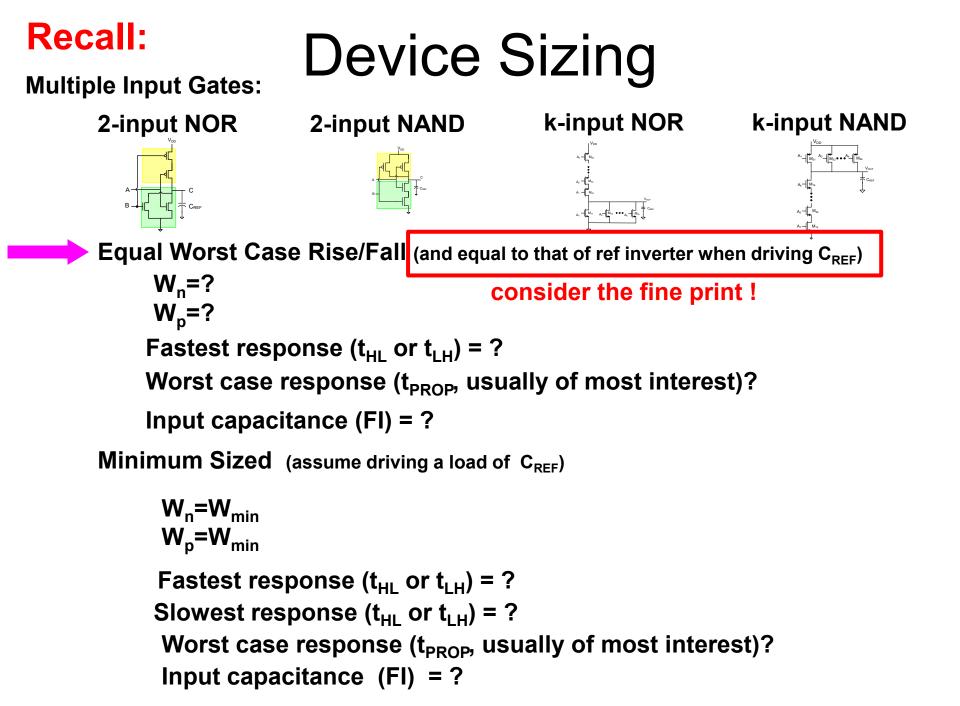
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
 - Other Logic Styles
 - Array Logic
 - Ring Oscillators

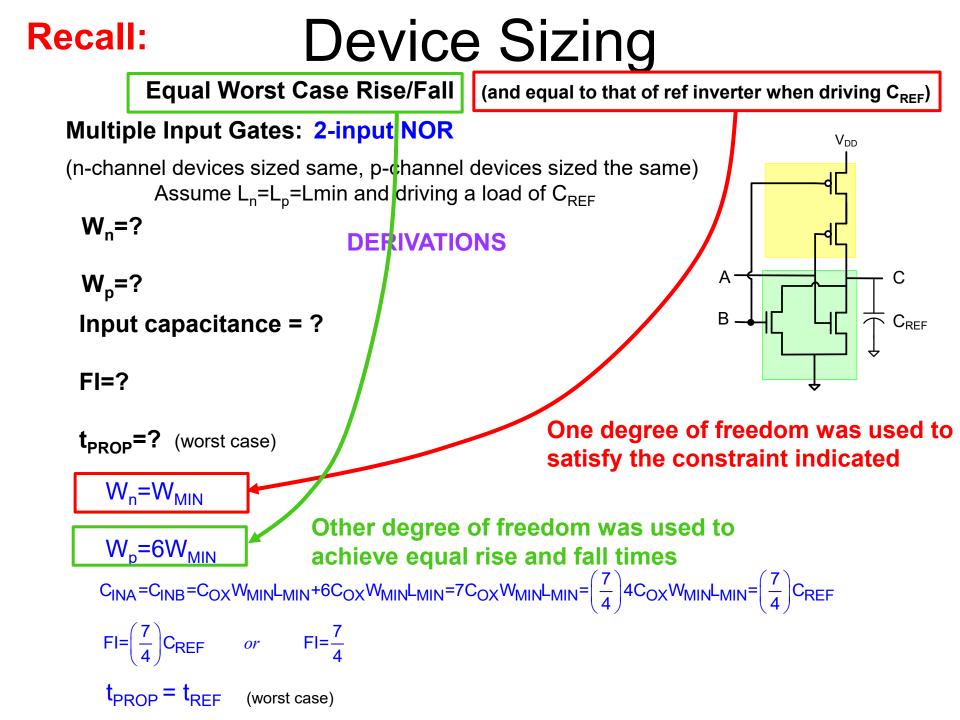
What if the propagation delay is too long (or too short)?



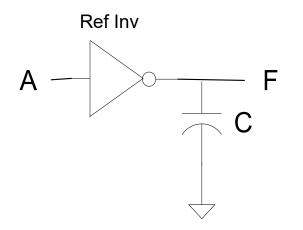
Propagation delay from A to F:

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$$
$$t_{PROPk} = t_{REF} FI_{(k+1)}$$





Overdrive Factors



Example: Determine t_{prop} in 0.5u process if C=10pF In 0.5u proc t_{REF}=20ps, C_{REF}=4fF,R_{PDREF}=2.5K

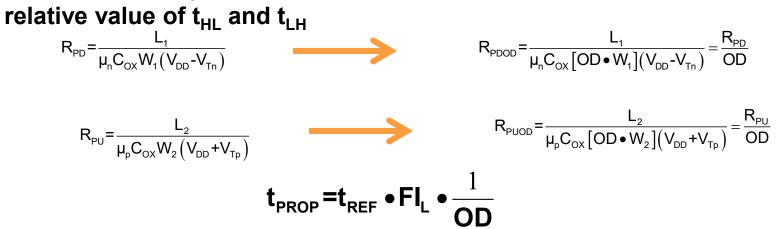
$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \mathsf{FI} = \mathbf{t}_{\mathsf{REF}} \bullet \frac{10\,pF}{4\,fF} = \mathbf{t}_{\mathsf{REF}} \bullet 2500$$

t_{PROP} =20ps • 2500 = 50nsec

Note this is unacceptably long !

Overdrive Factors $V_{IN} \rightarrow V_{IN} \rightarrow$

Scaling widths of ALL devices by constant (W_{scaled} =WxOD) will change "drive" capability relative to that of the reference inverter but not change relative value of t_{HL} and t_{LH}

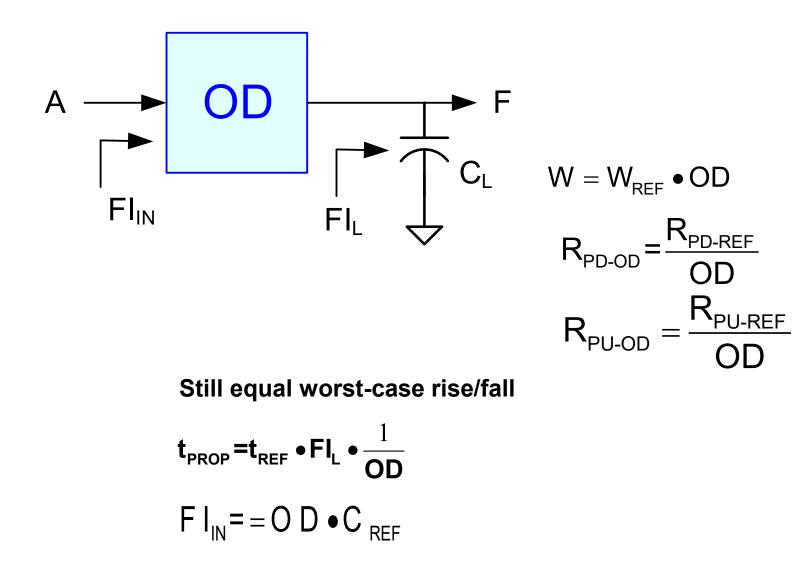


Scaling widths of ALL devices by constant will change FI_{IN} to gate by OD

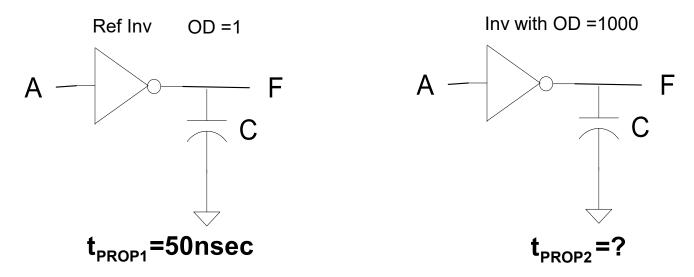
 $C_{IN} = C_{OX} (W_1 L_1 + W_2 L_2)$

Overdrive Factors - Summary

(For equal worst-case rise/fall gates)



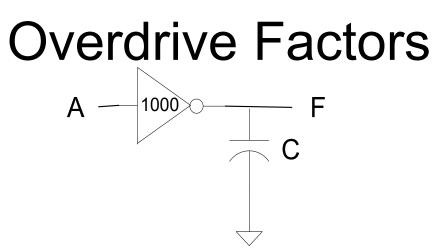
Overdrive Factors



Example: Determine t_{prop} in 0.5u process if C=10pF and OD=1000

$$\mathbf{t}_{\mathsf{PROP1}} = \mathbf{t}_{\mathsf{REF}} \bullet \mathsf{FI} \bullet \frac{1}{\mathsf{OD}} = \mathbf{t}_{\mathsf{REF}} \bullet \frac{10\,pF}{4\,fF} = \mathbf{t}_{\mathsf{REF}} \bullet 2500$$
$$\mathbf{t}_{\mathsf{PROP2}} = \mathbf{t}_{\mathsf{REF}} \bullet \mathsf{FI} \bullet \frac{1}{\mathsf{OD}} = \mathbf{t}_{\mathsf{REF}} \bullet \frac{10\,pF}{4\,fF} \bullet \frac{1}{1000} = \mathbf{t}_{\mathsf{REF}} \bullet 2.5$$

Note sizing the inverter with the OD improved delay by a factor of 1000 !



- By definition, the factor by which the W/L of all devices are scaled above those of the reference inverter is termed the overdrive factor, OD
- Scaling widths by overdrive factor DECREASES resistance by same factor
- Scaling all widths by a constant does not compromise the symmetry between the rise and fall times (i.e. t_{HL}=t_{LH})
- Judicious use of overdrive can dramatically improve the speed of digital circuits
- Large overdrive factors are often used
- Scaling widths by overdrive factor INCREASES input capacitance by same factor - So is there any net gain in speed?

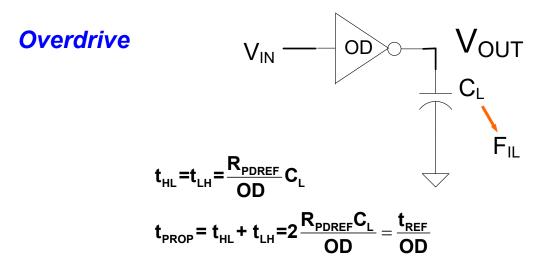
Digital Circuit Design

- Hierarchical Design
- **Basic Logic Gates**
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - 🔶 Ratio Logic
 - Propagation Delay
 - Simple analytical models
 - FI/OD
 - Logical Effort
 - Elmore Delay
- Sizing of Gates
 - The Reference Inverter

Propagation Delay with Multiple Levels of Logic

- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
 - Other Logic Styles
 - Array Logic
 - Ring Oscillators

Propagation Delay with Over-drive Capability



Asymmetric Overdrive

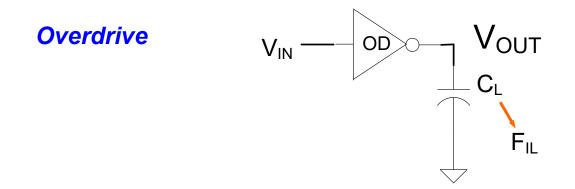
Define the Asymmetric Overdrive Factors of the stage to be the factor by which PU and PD resistors are scaled relative to those of the reference inverter.

$$R_{PDEFF} = \frac{R_{PDREF}}{OD_{HL}} \qquad R_{PUEFF} = \frac{R_{PUREF}}{OD_{LH}}$$

$$t_{HL} = \frac{R_{PDREF}}{OD_{HL}}C_{L} \qquad t_{LH} = \frac{R_{PDREF}}{OD_{LH}}C_{L}$$

$$t_{PROP} = t_{HL} + t_{LH} = \frac{R_{PDREF}}{OD_{HL}}C_{L} + \frac{R_{PDREF}}{OD_{LH}}C_{L} = R_{PDREF}C_{L}\left[\frac{1}{OD_{HL}} + \frac{1}{OD_{LH}}\right] = \frac{t_{REF}}{2}\left[\frac{1}{OD_{HL}} + \frac{1}{OD_{LH}}\right]F_{IL}$$

Propagation Delay with Over-drive Capability



If an inverter with OD is sized for equal rise/fall, OD_{HL}=OD_{LH}=OD

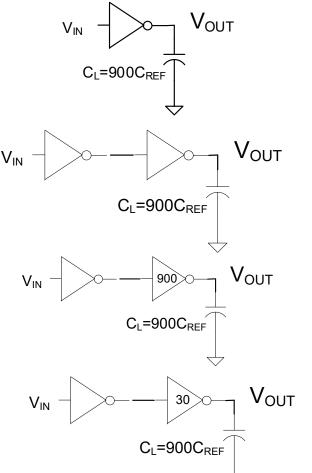
$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{R}_{\mathsf{PDREF}} \mathbf{C}_{\mathsf{L}} \left[\frac{1}{\mathbf{OD}_{HL}} + \frac{1}{\mathbf{OD}_{LH}} \right] = \mathbf{R}_{\mathsf{PDREF}} \mathbf{C}_{\mathsf{L}} \frac{\mathbf{2}}{\mathbf{OD}} = \mathbf{t}_{\mathsf{REF}} \frac{\mathbf{F}_{\mathsf{IL}}}{\mathbf{OD}}$$

OD may be larger or smaller than 1

Propagation Delay with Over-drive Capability

Example

Compare the propagation delays. Assume the OD is 900 in the third case and 30 in the fourth case. Don't worry about the extra inversion at this time.



$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} + \mathbf{900t}_{\mathsf{REF}} = \mathbf{901t}_{\mathsf{REF}}$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{900t}_{\mathsf{REF}} + \mathbf{t}_{\mathsf{REF}} = \mathbf{901t}_{\mathsf{REF}}$$

 $\mathbf{t}_{\mathsf{PROP}} = \mathbf{30t}_{\mathsf{REF}} + \mathbf{30t}_{\mathsf{REF}} = \mathbf{60t}_{\mathsf{REF}}$

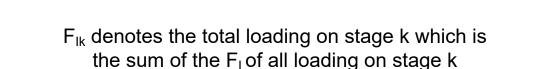
- **Dramatic reduction in t_{PROP}** is possible (input is driving same in all 3 cases)
- Will later determine what optimal number of stages and sizing is

Propagation Delay in Multiple-Levels of Logic with Stage Loading G₃

 $OD_3 F_{14}$

G_n

 OD_{n} : $F_{I(n+1)}$



Summary: Propagation delay from A to F:

 G_2

OD_{2:} **F**₁₃

G₁

 $OD_{1:}F_{12}$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \frac{\mathbf{F}_{\mathsf{I}(k+1)}}{\mathbf{OD}_{k}}$$

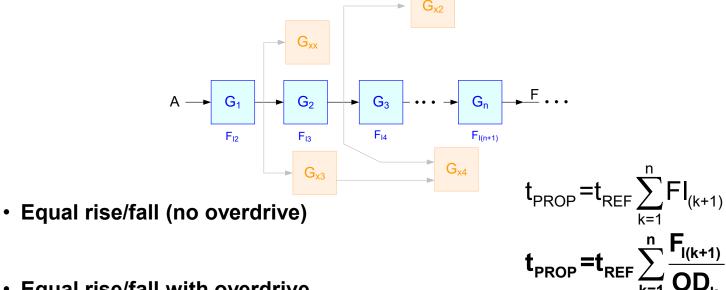
Propagation Delay in Multiple-Levels of Logic with Stage Loading

Will consider an example with the five cases

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

Will develop the analysis methods as needed

Propagation Delay in Multiple-Levels of Logic with Stage Loading

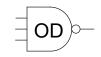


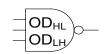
- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

- $t_{PROP} = ?$
- t_{PROP}
- terre

Driving Notation

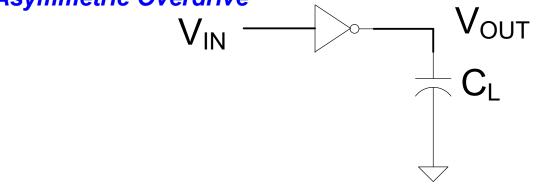
- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive





Notation will be used only if it is not clear from the context what sizing is being used

Propagation Delay in Multiple-Levels of Logic with Stage Loading

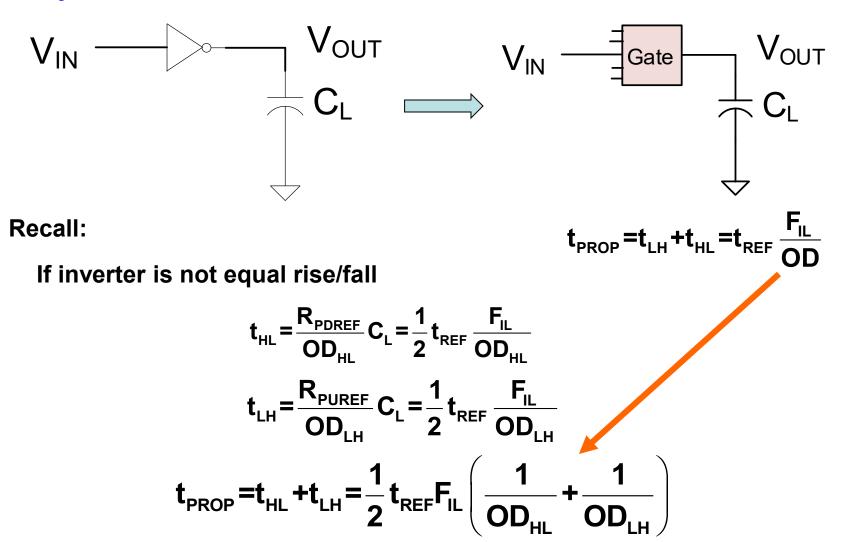


Recall:

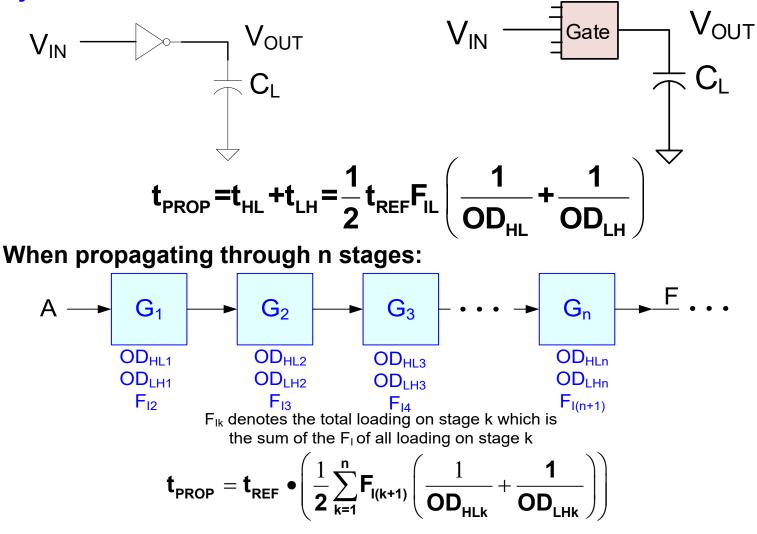
Define the Asymmetric Overdrive Factors of the stage to be the factors by which PU and PD resistors are scaled relative to those of the reference inverter.

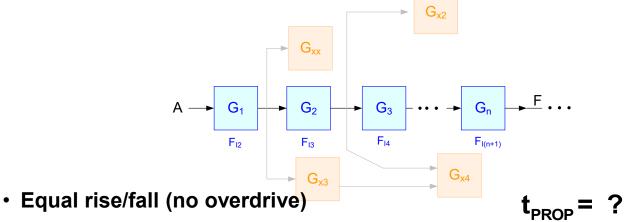
$$R_{PDEFF} = \frac{R_{PDREF}}{OD_{HL}} \qquad \qquad R_{PUEFF} = \frac{R_{PUREF}}{OD_{LH}}$$

Asymmetric Overdrive



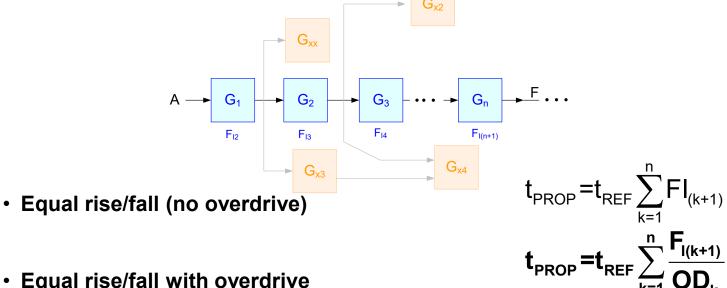
Asymmetric Overdrive





- Equal rise/fall with overdrive $t_{PROP} = ?$
- Minimum Sized $t_{PROP} = ?$
- Asymmetric Overdrive $t_{PROP} = ?$
- Combination of equal rise/fall, minimum size and overdrive

 $t_{PROP} = ?$

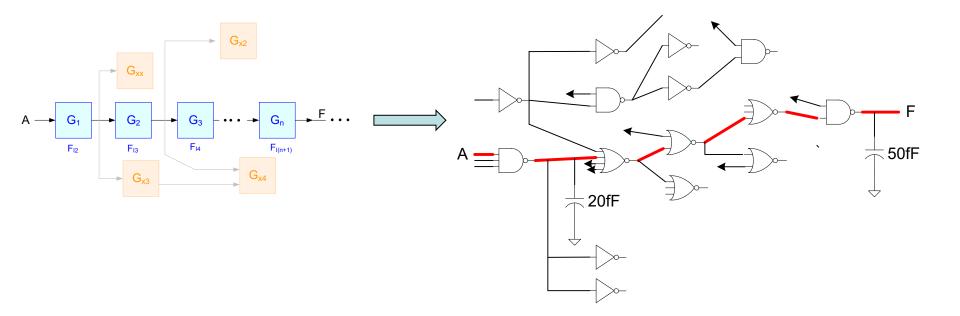


- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{f}_{\mathsf{REF}} \cdot \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HL}k}} + \frac{1}{\mathsf{OD}_{\mathsf{LH}k}} \right) \right)$$

Propagation Delay in Multiple-Levels of Logic with Stage Loading and Overdrives

Will now consider A to F propagation for this circuit as an <u>example</u> with different overdrives



everdrive) $r = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$

- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

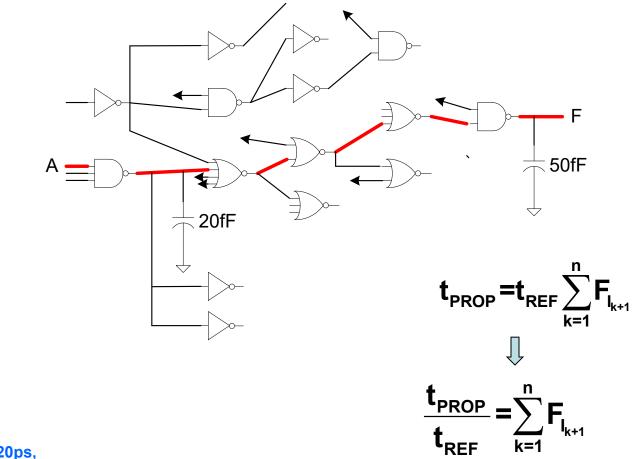
$$t_{PROP} = ?$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

 $t_{PROP} = t_{RFF} \sum_{n=1}^{n} \frac{F_{l(k+1)}}{2}$

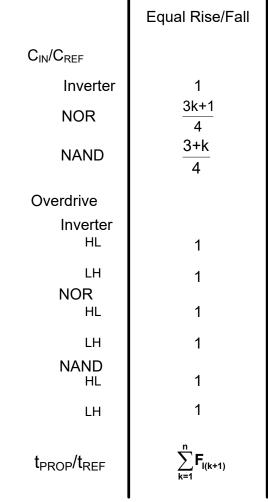
t_{PROP}= ?

Equal rise-fall gates, no overdrive



In 0.5u proc t_{REF} =20ps, C_{REF}=4fF,R_{PDREF}=2.5K

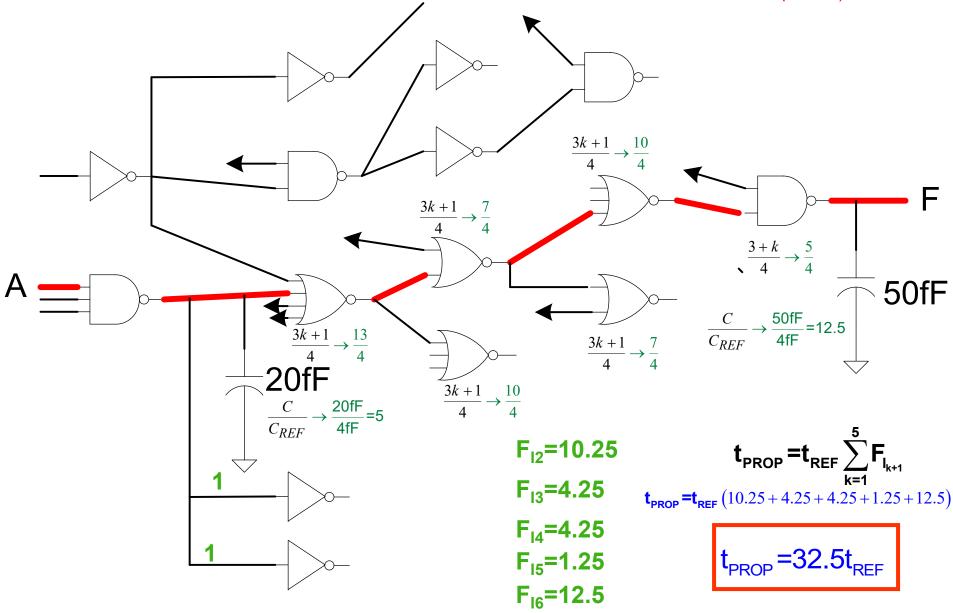
Equal rise-fall gates, no overdrive



Equal rise-fall gates, no overdrive

In 0.5u proc t_{REF}=20ps, C_{REF}=4fF,R_{PDREF}=2.5K

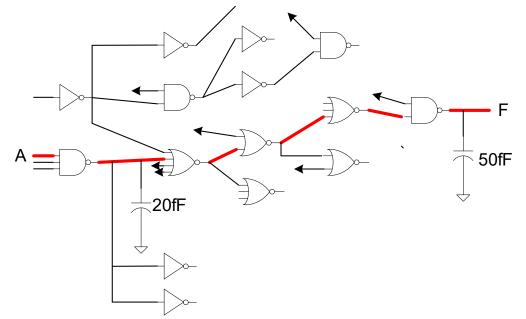
(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

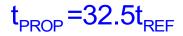


Equal rise-fall gates, no overdrive

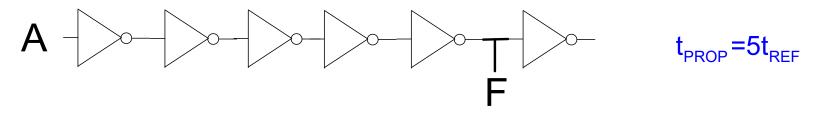
In 0.5u proc t_{REF}=20ps, C_{REF}=4fF,R_{PDREF}=2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

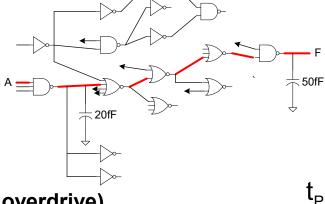




How does this propagation delay compare to that required for a propagation of a signal through 5-levels of logic with only reference inverters (load is a ref inverter instead of 50fF as well)?



Loading can have a dramatic effect on propagation delay



• Equal rise/fall (no overdrive)

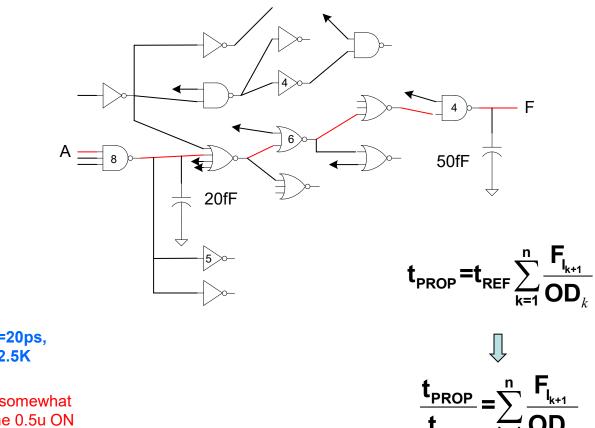
- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$$
$$t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{I(k+1)}}{OD_{k}}$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HL}k}} + \frac{1}{\mathsf{OD}_{\mathsf{LH}k}} \right) \right)$$

t_{PROP} = ?

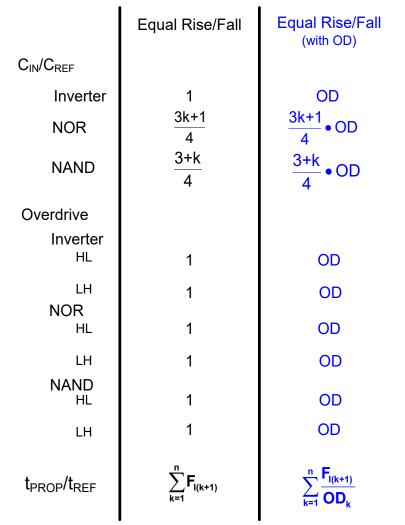
Equal rise-fall gates, with overdrive



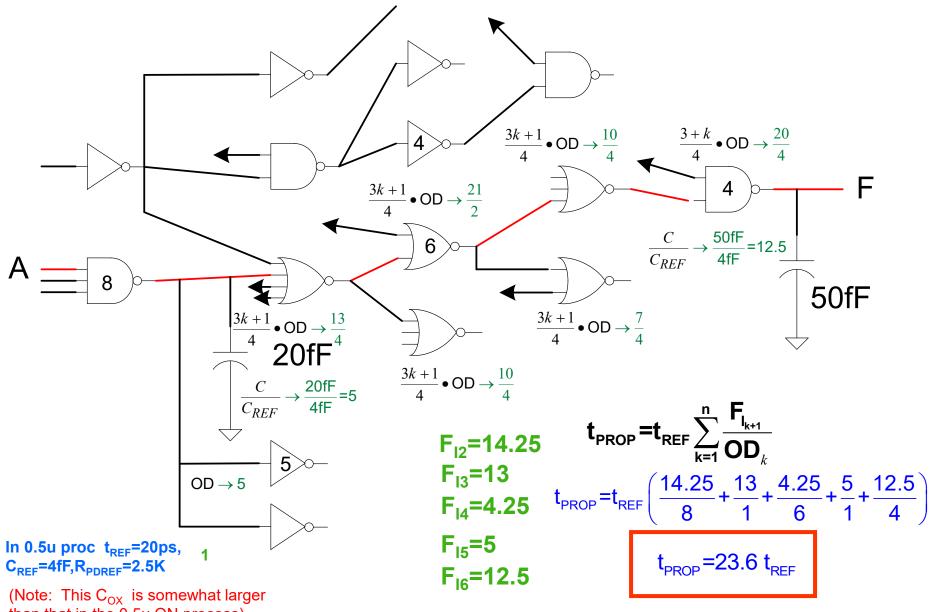
In 0.5u proc t_{REF} =20ps, C_{REF} =4fF, R_{PDREF} =2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

Equal rise-fall gates, with overdrive

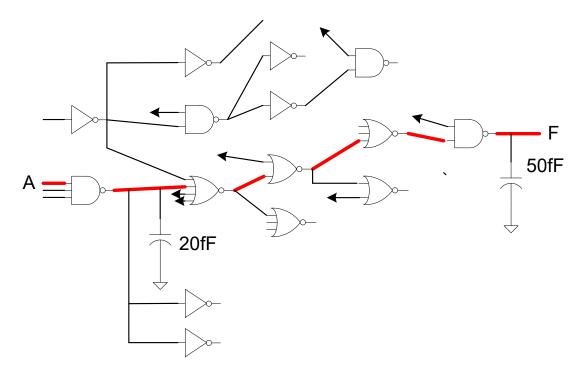


Equal rise-fall gates, with overdrive



than that in the 0.5u ON process)

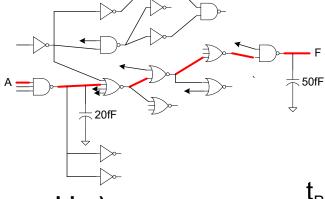
Minimum-sized gates



In 0.5u proc t_{REF} =20ps, C_{REF}=4fF,R_{PDREF}=2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet ?$$



• Equal rise/fall (no overdrive)

- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

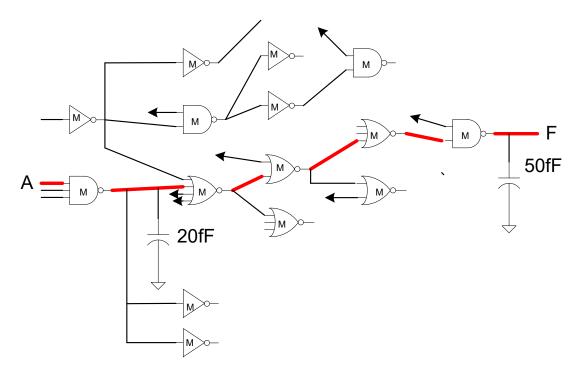
 $t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$ $t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{I(k+1)}}{OD_{k}}$

t_{PROP}= ?

$$\boldsymbol{t}_{\text{PROP}} = \boldsymbol{t}_{\text{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \boldsymbol{F}_{\text{I}(k+1)} \left(\frac{1}{OD_{\text{HLk}}} + \frac{1}{OD_{\text{LHk}}} \right) \right)$$

t_{PROP}= ?

Minimum-sized gates

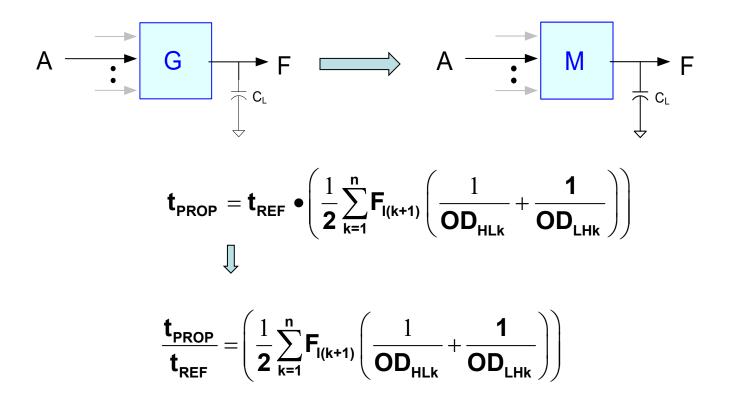


 $\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet ?$

Observe that a minimum-sized gate is simply a gate with asymmetric overdrive

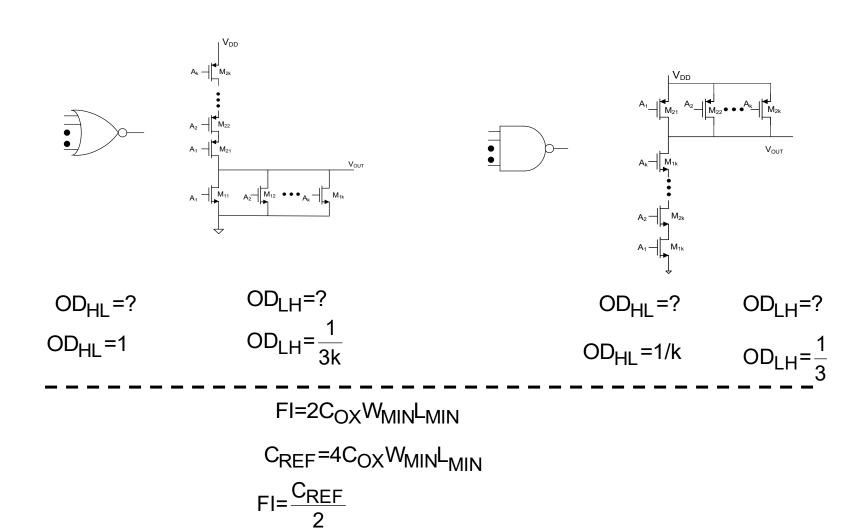
Recall:

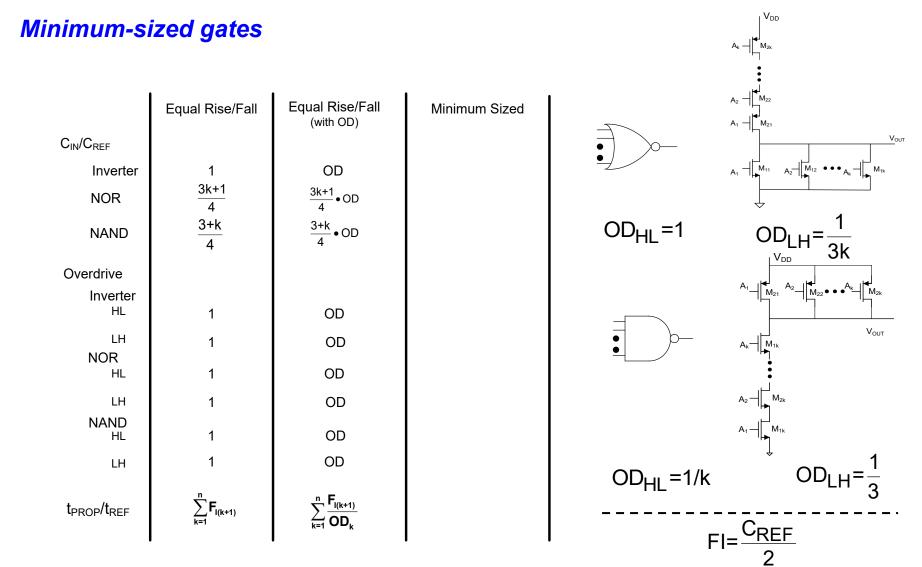
Propagation Delay with Minimum-Sized Gates



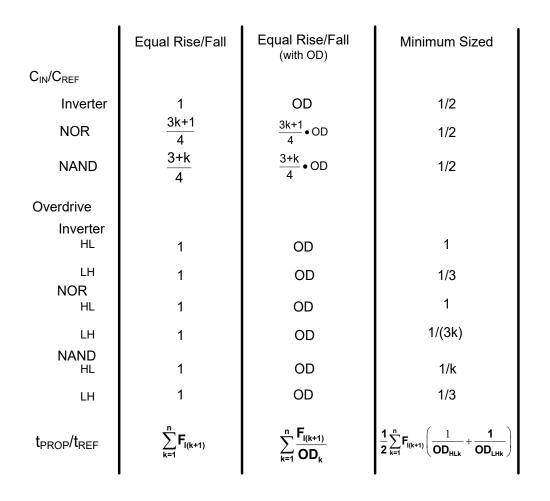
- Still need OD_{HL} and OD_{LH} for minimum-sized gates
- Still need FI for minimum-sized gates

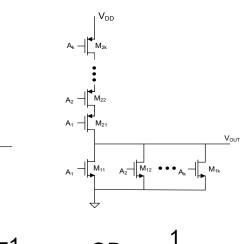
Propagation Delay with minimum-sized gates

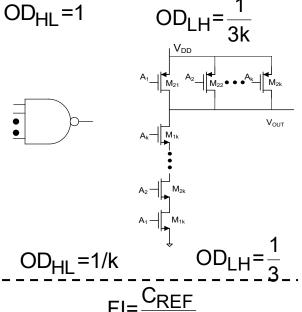




Minimum-sized gates







Minimum-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized
C_{IN}/C_{REF}			
Inverter	1	OD	1/2
NOR	$\frac{3k+1}{4}$	$\frac{3k+1}{4} \bullet OD$	1/2
NAND	$\frac{3+k}{4}$	$\frac{3+k}{4} \bullet OD$	1/2
Overdrive			
Inverter HL	1	OD	1
LH	1	OD	1/3
NOR HL	1	OD	1
LH	1	OD	1/(3k)
NAND HL	1	OD	1/k
LH	1	OD	1/3
t _{PROP} /t _{REF}	$\sum_{k=1}^{n} F_{l(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_{k}}$	$\frac{1}{2}\sum_{k=1}^{n} \mathbf{F}_{I(k+1)} \left(\frac{1}{\mathbf{OD}_{HLk}} + \frac{1}{\mathbf{OD}_{LHk}} \right)$

Stay Safe and Stay Healthy !

End of Lecture 41